Prediction of Harvest Time of Tomato Using Mask R-CNN

نویسندگان

چکیده

In recent years, the agricultural field has been confronting difficulties such as aging of farmers, a shortage workers, and for new farmers. Harvesting time prediction potential to solve these problems, is expected effectively utilize human resources, save labor, reduce labor costs. To achieve harvesting prediction, various works are being actively conducted. Methods using meteorological information temperature solar radiation, etc., methods neural networks based on color from fruit bunch images investigated. However, accuracy still insufficient, individual tomato fruits not studied. this study, we propose novel method predict fruits. The uses Mask R-CNN detect bunches two types ripeness determination experimental results showed that ratio R values was better tomatoes close time, average differences between G in RGB far time. These show effectiveness proposed method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prostate segmentation and lesions classification in CT images using Mask R-CNN

Purpose: Non-cancerous prostate lesions such as prostate calcification, prostate enlargement, and prostate inflammation cause too many problems for men’s health. This research proposes a novel approach, a combination of image processing techniques and deep learning methods for classification and segmentation of the prostate in CT-scan images by considering the experienced physicians’ reports. ...

متن کامل

Activity Prediction using a Space-Time CNN and Bayesian Framework

We present a technique to address the new challenge of activity prediction in computer vision field. In activity prediction, we infer the next human activity through “classified activities” and “activity data analysis. Moreover, the prediction should be processed in real-time to avoid dangerous or anomalous activities. The combination of space–time convolutional neural networks (ST-CNN) and imp...

متن کامل

assessment of the efficiency of s.p.g.c refineries using network dea

data envelopment analysis (dea) is a powerful tool for measuring relative efficiency of organizational units referred to as decision making units (dmus). in most cases dmus have network structures with internal linking activities. traditional dea models, however, consider dmus as black boxes with no regard to their linking activities and therefore do not provide decision makers with the reasons...

R-CNN minus R

Deep convolutional neural networks (CNNs) have had a major impact in most areas of image understanding, including object category detection. In object detection, methods such as R-CNN have obtained excellent results by integrating CNNs with region proposal generation algorithms such as selective search. In this paper, we investigate the role of proposal generation in CNN-based detectors in orde...

متن کامل

investigation of thermal comfort properties of woven sport fabric using blend of estabragh fibers

امروزه لباس در نظر ورزشکاران و کسانی که برای اوقات فراغت خود و یا برای رسیدن به اندامی متعادل، ورزش می کنند؛ بسیار با اهمیت است. احساس مطلوب از لباس در زمره خصوصیات راحتی پوشش می باشد. خصوصیات انتقال رطوبت لباس، در ارزیابی راحتی حسی و حرارتی منسوجات تولید شده از آن ها بسیار مهم است. هدف از این تحقیق، معرفی پارچه جدید است که متشکل از الیاف استبرق با خواص منحصر به فرد می باشد. استبرق لیف طبیعی تو...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: AgriEngineering

سال: 2022

ISSN: ['2624-7402']

DOI: https://doi.org/10.3390/agriengineering4020024